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Note added in proof'. Dr T. Matsumoto (personal 
communication) has pointed out to us that some of the 
cases presented in Tables 2 and 3 do not hold as 
enhancement cases for pairs of geometrically and 
chemically identical substructures. It is still possible to 
obtain enhancement in some of those cases by 
combining more than two geometrically and chemic- 
ally identical substructures, but, in any case, all the 
cases tabulated in this paper hold as enhancement 
cases in the more general instance of chemically 
different ( 'proportional') substructures. 

We extend our appreciation to Professor A. Cha- 
morro (University of Bilbao) for several stimulating 
discussions on mathematical topics. We are grateful 
to Professor W. Nowacki and PD P. Engel (both 
University of Bern) for reading the manuscript and 
for their valuable suggestions. 
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The iterative procedure of phase determination in direct methods is considered as a filtering process. 
The use of different filter transforms for more effective filtering is proposed. The eigenvector transform 
for optimal extraction of reliable structure information from approximate densities is introduced. 

1. Introduction 

Since the first papers on direct methods for structure 
determination (Karle & Hauptman, 1950; Sayre, 1952) 
it was apparent that these methods were related to 
the a priori information present in the atomic ar- 
rangement and the electron density of the structure 
in question. The principles of positivity and atomicity 
together with the observed structure-factor ampli- 
tudes enabled the solution of structures of considerable 
complexity. Until then, the normal method of struc- 
ture determination, the heavy-atom method or the 
more general partial-structure method, also used the 
atomicity principle but in a different way. The po- 
sitioning of the heavy atom or partial structure and 
the consequent phasing of structure factors is of quite 
specific character and only pertains to the structure 
in question. However, the determination of the missing 
structure part by weighting the structure-factor am- 
plitudes also relies on quite general principles and 
involves statistical considerations. 

In contrast, the a priori information of direct 
methods is in most cases of an entirely general, sta- 
tistical character. The natural way to estimate and 

measure the amount  of information present in these 
principles is by information theory. In the following 
some information-theory aspects are used to derive 
results for both heavy-atom and direct methods to 
indicate their similarity. Furthermore the treatment 
is given of a special problem in structure determina- 
tion as seen from information theory. 

2. Structure determination as image filtering 

X-ray structure determination can be considered as 
an imaging of an object (structure) where the Fourier 
transformation in the nonexistent X-ray lens is re- 
placed by a calculated Fourier transformation to 
which the principles of optical image formation can 
be applied. Of special concern in this context is the 
separation of object and noise in an image. 

r=s.n ~ R=S.N GR"=R'GJ~ r'=s÷n'~o 

Fig. 1. Generalized Wiener filtering. 
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(a) Spectral filtering 
The typical filtering process of noisy images is shown 

in Fig. 1. The object s and the noise n compose the 
total input r(x)=s(x)+n(x) which is subjected to the 
transformation T, then corrected by the filter G and 
transformed back by the transformation T-1 to give 
a filtered output o(x)=s(x)+n'(x) with a reduced 
noise component n'(x). Applying the quadratic measure 
of Wiener filtering one obtains (see, for example, 
Gallagher & Liu, 1975) an optimal filter as: 

(10--S[2>= _f ]°--s[ZdV=minimum (1) 

45"s(°J) • (2) 
G((~)- (b.((o) ' 

where (brs is the cross-spectral density between input 
r and objects s, whereas (/)rr is the spectral density 
of the input r. The expressions (b,s and q)r~ are cal- 
culated by the Fourier transformations 

(3a) 

rb~(m)=o~{fr(x) ,r (x)dV} (3b) 

where the sign • indicates a convolution and m is the 
spectral frequency. 

Rewriting the procedure of Fig. 1 in crystallographic 
terms one obtains the following (Fig. 2). The input 
consists of the partial structure information 4p(X) con- 
sidered as the total density 4(x) with additional noise 
density 4,(x). After Fourier transformation one ob- 
tains the complex structure factor F f = ~ { 4 p }  which 
is filtered with a function Gn after (2) to obtain an 
improved density 4*(x): 

4" =ook-a - I{Gh. F~} . 

The filter Gh is given by 

~°PQ(h) (2a) 
Gh = cbopQp(h ) • 

The denominator ~Q 0 is just the Patterson coeffi- 
• . P P  

cmnt for the recxprocal vector h: 

The numerator 45op o of (2a) is calculated as" 

(3b') 

= Fp,. F_ h = F~,Fh exp i(o~g- ~,). (3a') 

The amplitudes Fh and Fg are given by observed and 
calculated values respectively. Only the phase factor 
has to be determined. Assuming a Gaussian distribu- 

tion of Fh around F~ (Fig. 3) and taking the expecta- 
tion value one obtains (Cochran, 1955)" 

(exp i(o~--O~h) ) -~ (COS (O~h-- ~ )  ) 

= (COS Z ] O ~ h )  - -  I I ( X h )  " 

lo(XO ' 

2FhF~ 
Xh--IF~,I 2 • 

The total weighting factor is then given by" 

Gh = F~Fh I x(Xh) 
leg] 2 Io(Xa)" (2b) 

The filtered Fourier coefficient Rh becomes 

• Fh Ix(Xh) Ii(Xh) 
Rh-- F~ Io(Xh-------) F~-  Io(Xh)-- Fh exp ( i~) .  (4) 

This is the optimal weighting of a partial-structure 
Fourier synthesis and is well known in crystallog- 
raphy (Sire, 1960; Woolfson, 1956). It is based on a 
purely statistical relation between the partial and the 
final structure and under the above assumptions 
reaches the best signal-to-noise ratio of all weighting 
schemes (Gassmann, 1966; Nixon & North, 1976). 

(b) Spatial filtering 
An optimal filtering of the above type in direct space 

is not directly possible, since, for a certain location 
x, no specific or statistical property of 4(x) is known. 
Only the general properties of Q at all locations x 
(positivity, atomicity, etc.) can be assumed to be known. 

The filtering to be applied must therefore rely on 
these properties, so it would be more appropriate to 
call this a statistical or a priori filter. Starting from 
the optimal filter condition 

((4 -- 4*) 2) = f ( 4  -- 4") 2dV = minimum 

and the positivity condition 

1 >_4,4*>_0 

where 4" is the filtered density, one can formulate 
general conditions which have to be met by the filtering 
process (Gassmann, 1976a). 

In many structure determinations the only available 
indication for the behaviour of the final density 4 is 
the given initial density Qp. The filtering factor g in 
these cases must therefore depend on this initial 
density" g=g(Qp). The filtering process as indicated 
in Fig. 4 is equivalent to the iterative procedure of 
direct methods in structure determination (Gassmann, 
1976b). 

Comparison with the normal filtering of Figs. 1 and 
2 shows, however, that there are essential differences. 
First, knowledge of the structure factor amplitudes 
F~ bS allows iterative filtering. The Fourier coefficients 
Fh of the filtered density Q* combined with these values 
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F~ bs result in new initial structure factors F~, which 
can be used as new input to the filtering process. 

Second, the spatially filtered structure factors Fh, or 
rather their phases Oh, are not taken directly to calcu- 
late the new input density in combination with the 
observed structure factor amplitudes. According to the 
above derivations it would be optimal to filter struc- 
ture factors Fh according to (4). However, the spectral 
noise density IFgl 2 of a modified density is not known 
in general. This is in contrast to the partial-structure 
method where this spectral noise density can be taken 

L 

as IFgl2- - Z f2(h) (L=number of unknown atoms, 
j = l  

f] = atomic form factor). Therefore, one approximates 
the spectral noise density by the average total spectral 

N 

density [F~,[2= ~ f2(h)  (N=to ta l  number of atoms), 
j = l  

which certainly for the initial iteration cycles is a very 
good approximation, and obtains: 

Xh 2FhF~, bs _ .~ w* ~-obs 
= ~ - - / . , L ,  hL~ h 

j = l  

(E = normalized structure factor) and a filtered coef- 
ficient R~ as: 

Rh-- II(Xh) F~b ~ exp (iq~h) (4a) 
Io(Xh) 

The values Rh are used as new input F~ to calculate 
a new density. 

The values of Fh (or Eh) must be scaled appro- 
priately to form a vector triangle with Fh and FT, ac- 
cording to Fig. 3. Consequently, if Eh is expressed as 
convolution products of Eh this introduces powers of 
] /N into the expression for the value Xh (Gassmann, 
1975). 

Usually, (4a) is not applied strictly. Only those 
phases Ch whose structure factors Eh form the largest 
products Xh = 2EhE~,b~ > limit are accepted as iterative 
input. 

Third, the iterative procedure of Fig. 4 is impossible 
with the spectral filtering of Fig. 2 where the statistical 
information leads only to a scalar weighting or filtering. 
In that case each spectral component F~ is weighted 
only individually in amplitude and not in phase [-see 
(4)]. Therefore, spatial filtering of density, i.e. direct 
methods of structure determination by vector filtering 
of the input, alone permit the use of iterative pro- 
cedures which incorporate the measured amplitudes 
F~ bs. 

Furthermore, the known  amplitudes F~ bs contain 
information about the total density Q. This is important 
for the convergence of the iterative process. Rewriting 
the density Q as a sum of atomic densities 

N 

e(x)= ~ ej(x) 
j = l  

where 

f ~jQkd V ~ ~jk 

one can show from very general mathematical prin- 
ciples (Zurmtihl, 1964) that, starting with any initial 
density Qp which contains information (possibly in- 
complete) about all Q;, the correct density Q can be 
obtained by iterations with an appropriately chosen 
filter factor g. This ensures that the total density can 
in principle be recovered from the initial density. 

Lastly, the filter factor g at a certain space point x 
must not only depend on the density at this space 
point Q(x), but can also take into account the density 
in the whole unit cell and the specific properties and 
constraints known about the structure. Typical ex- 
amples of such constraints are atomic distances, molec- 
ular compounds, empty or solvent regions and non- 
crystallographic symmetries. 

(c) Matched filtering 
To obtain the initial phases for spectral filtering in 

reciprocal space from heavy-atom or partial-structure 

Fp 9p =~÷Pn ~h F~ P " 

h 

Fig. 2. Optimal filtering in reciprocal space for structure determina- 
tion. Each spectral component is multiplied by a scalar filtering 
factor G h. 

/ /  \ \  
// \\ 
/ \ 

.n Fh / /  

Fig. 3. Decomposition of the input structure factor F£ into the 
'signal' structure factor Fh and the 'noise' structure factor F~,. For 
calculation of the spectral filtering factor a Gaussian distribution 
of F h around F£ is assumed. 

g(lp) 

"+ + 
IFFI ! 

eoR --G .F" t C " h  ~ - h  ~ 

Gh 
Fig. 4. Iterative procedure of direct methods. The input density 

Qp is spatially filtered to represent better the final density. The 
resulting Fourier coefficients Fh are spectrally filtered to op- 
timize the contributions Rh = GhFh = [I l(Xh)/Io(Xh)]F~ b" exp (i~p~) 
to form a new input density. 
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positions one normally has to use Patterson search 
techniques. There exists a strong correspondence be- 
tween the rotation and translation search procedures 
in structure determination (for chronological re- 
ferences see Karle, 1972) and matched filtering (see 
for example, Turin, 1960; van der Lugt, 1964). These 
search techniques are a generalization of matched 
filtering for an arbitrarily oriented and situated signal. 
The information comparison or matching is done be- 
tween the convolution product of the total signal 
(Patterson function) o 'Pa t t~ - -O*  O and the convolution 
product of the known signal form (convolution mole- 
cule) ac°nv=op*Ov, or their respective Fourier coef- 
ficients. If one requires that the information content 
of the given 0 "Patt about the correct position of a c°"v 
is not to be decreased by a filter operation, the cor- 
relation function 

f crPattcrc°nv(0, t)d V = K(0,t) (5) 

must be a maximum (see, for example, Woodward, 
1953) with respect to the rotation parameters 0 and 
the translation parameters t. Rewriting (5) one ob- 
tains the representation in reciprocal space: 

IFhl2[F~(O,t)12=K(O,t) ~ KI(0)K2(t). (5a) 
h 

The separation of the rotation and translation de- 
pendency of this cross-correlation allows the successive 
rotation and translation operations to be determined. 

3. Information content of crystal structures 

As a crystal structure may be regarded as being de- 
fined by the atomic locations one can ask what amount  
of information is present in such a representation, and 
what is the best coding of this information. This coding 
will be shown to be of importance for evaluating the 
minimum number of free parameters necessary to 
determine a structure. 

Subdividing an elementary cell into M small units 
which may contain an atom or be empty, one obtains 
a bit representation of this structure. The N units 
( N = a t o m s  per unit cell) containing an atom are 
labelled '1'; the rest are labelled '0', so a sequence of 
the M bits codes the structure information. Thus, for 
an orthogonal unit cell, say, of volume V A3 and a 
subunit length of 1/m ~ the number of bits would be 
very large, namely of the order M = Vm 3 bits. 

As a result of the sparse distribution of atoms in 
the subunits, it is obvious that the normal coding 
with atomic coordinates is much more compact. One 
atom needs for location determination with the 
above assumed subdivision A1 + A2 + A3 bits, where 
Ai is at least the next power of two larger than mai 

t Heavy atoms could be coded as multiple normal atoms at the 
same location. The number N must then be changed appropriately. 

(ai=unit-cell dimension). The total structure is then 
given by (AI+AE+A3)N bits. To find the optimal 
coding one must calculate the information entropy of 
the structure. This is given by (Shannon, 1949): 

H =  - e  log2 e - ( 1  - e )  log2 (1 - e )  (7) 

where e is the probability of finding an atom indica- 
tion in one of the subdivision units. For small e this 
is rewritten as: 

N N 
H~-e(1 - l o g 2  e); e=  ~ = ~ "~ 1 . (7a) 

The value e is proportional to N / V = k  which is ap- 
proximately constant (1 /k~20 ,~3 a tom-l ) .  For ex- 
ample, a subdivision length of 1/m = (¼ A) along each 
unit-cell dimension would result in 

N b ~ 1 0 - 3  e= f f  

Insertion of the value for e in (7a) leads to: 

V m  3 1 - l°g2 ~m--Xma 

k 
= ~ (1 + 3 log2 m - l o g 2  k) (7b) 

which only depends on the subunit division m. The 
optimal coding, i.e. the minimal number of bits re- 
quired for this information is given by: 

B = H M = N ( 1  +3  log2 m - l o g 2  k). (8) 

The minimal number of coding bits per atom is 

b =  ~- = l - l o g 2  =(1 + 3  log2 m - l o g 2  k) (8a) 

independent of the structure size, whereas coordinate 
coding, for example, increases with the unit-cell size. 

A typical example with assumed unit-cell dimensions 
a i=16  A (i=1,2,3) and a subdivision of 1/m=¼ A 
indicates the different orders of magnitude for the 
coding of an atom: 

subunit coding: 

M V m  3 m 3 
b -  N - N - -k- - 103 bits; 

coordinate coding: 

b=A1 + A2 + A3 = 18 bits; 

minimal coding: 

b = ( 1 + 3  log2 m - l o g 2  k)_~11 bits.  

It should be pointed out that this minimal coding does 
not take into account further, Markov-type knowledge 
such as interatomic distances, which would lower the 
entropy still further. 

How is structural information coded by Fourier 
coefficients in reciprocal space? As in coordinate 
coding A ~ + A 2 + A 3 - -  3 bits are needed to give the re- 



478 SOME INFORMATION-THEORY ASPECTS OF STRUCTURE DETERMINATION 

flexion index h. In addition the complex structure 
factor must be coded, and if a sufficient accuracy is 
to be achieved, a normalized structure factor can be 
coded by four bits for the amplitude and eight bits 
for the phase information in the acentric case. In the 
centric case, however, only 1 bit for sign information 
is needed. 

From our own experience and that of others (see, 
for example, Lessinger, 1976) one knows that the order 
of 5N to 10N reflexions is necessary to represent atomic 
positions in a crystal structure unambiguously. Coding 
by Fourier coefficients in reciprocal space is, therefore, 
less compact than coding for atomic coordinates in 
real space. 

This influences the relative effectiveness of different 
filtering procedures. A better, more concise coding 
contains less redundant information and has more ef- 
fect on a filtering operation. Consequently real-space 
filtering should be more effective than reciprocal- 
space spectral filtering. On the other hand, one must 
prevent noise enhancement in the more effective 
filtering procedure. In spatial filtering of crystal struc- 
tures quite arbitrary filters are possible. One form of 
filtering often used is clipping of density (Kartha, 
1969; Hoppe, Gassmann & Zechmeister, 1970; Barrett 
& Zwick, 1971; Collins, 1975; Nixon & North, 1976) 
which, unfortunately, may lead to considerable aliasing 
and wrong phase and structure indications, which are 
not always correctable by the inclusion of the known 
structure-factor amplitudes. 

4. Image filtering by unitary transformations 
As indicated by the general principle of filtering (Fig. 
1) this process can be implemented by any unitary 
transform T. The use of the Fourier transform T = o~ 
in structure determination (Figs. 2 and 4) has great 
advantages, since the experimentally determined struc- 
ture-factor amplitudes ]Fh] immediately give the 
spectral power density. Nevertheless, the relatively in- 
efficient coding of structure information by Fourier 
components raises the question of effecting a more 
compact coding by other transforms. So, for example, 
the Walsh or Haar transforms seem to be candidates 
because of the form of their eigenfunctions which ap- 
proaches better atomic densities and the coding of the 
atomic coordinates discussed above. 

However, the difficult sequency problem (see, for 
example, Beauchamp, 1975) must be taken into ac- 
count. An intermediate solution of this could be the 
combination of Fourier components approaching the 
eigenfunctions of these transforms. 

Another filter transform which enables quite general 
information filtering and compression is the eigen- 
vector transformation (sometimes called principal 
component, Hotelling, or Karhunen-Lo6ve transform). 

The principles of the eigenvector transform can be 
described as follows. A given set of n incomplete or 
noisy images Q=(¢I,Qz,...Q,) is to be combined in an 

optimal way to result in another set of images Q*= 
(Q],Q2,...~:) where ¢1 contains the maximum of re- 
liable information. In matrix form this transformation 
reads: 

O* =A(o-  (0)) ,  (9) 
where (Q) is the average value of the known structural 
content of the image set. The n x n-matrix A is cal- 
culated from the covariance matrix e=  I]cu] I where 

cu = ( (~,-  (o~)) (o j -  ( ~ ) ) ) .  (IO) 

The relative magnitudes of the eigenvalues 2k as solu- 
tions of 

I Ic-~l l=0;  (11) 

indicate the information content of the successive com- 
ponent images Qk. The normalized eigenvectors are 
the rows of the transformation matrix A. 

An immediate application of this transform in crystal 
structure determination is apparent. In direct methods 
of structure determination starting with different initial 
phase sets or different symbolic or numerical phase 
values a number of densities may be obtained which 
exhibit only incomplete pictures of the atomic posi- 
tions. Often the orientation of a molecular partial 
structure is correct but the translation parameters have 
to be found from a translation search (Karle, 1972). 
The elements of the correlation matrix are calculated 
as:  

cu= (~oiLoj>= ~_, F~,FJ- h (10a) 
h 

because the Fo term is not normally included. If a 
partial structure is known, (Qk)¢0 and can be in- 
cluded in the calculation. Since the density in an equal- 
atom structure is limited to 0_< Q_< 1 it can also be of 
advantage to restrict the variance calculation of (10) 
to this range. Thereby one eliminates those images 
which show one or a few abnormally high peaks above 
the upper density limit ~--1, but little further struc- 
ture details. Even more complicated and structure- 
dependent covariance definitions are possible. 

The solution of the eigenvalue equation (11) leads 

Ig(%) 
0% _ .p~ " .p': l.plexp i ~, {_pp} 

f2-- r2 ~ exp~: , .F2 
IG. 

Fig. 5. Phase determination in electron microscopy. Instead of 
weighting the density 0p and the Fourier coefficients F~,, the 
known amplitudes of both the complex density and the Fourier 
coefficients are inserted as "filter'. An additional weighting of the 
density and the Fourier coefficients corresponding to the a priori 
knowledge about the object would also be possible. 
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to the eigenvalues and the eigenvectors, from which 
the transformation matrix A is found. 

The consequence of this procedure is, that by simple 
coherent addition of images one does not obtain op- 
timal information extraction. This is only accom- 
plished by superposition according to (9). 

This superposition is of even greater importance for 
three-dimensional structure determination in electron 
microscopy (Hoppe, Schramm, Sturm, Hunsmann & 
Gassmann, 1976). Because of experimental limita- 
tions, radiation-damaged density projections of dif- 
ferent quality have to be combined. Furthermore, in- 
dividual structural objects reconstructed from dif- 
ferent experimental data must be superposed to in- 
crease the incomplete information of a single three- 
dimensional image. 

5. Conclusion 

The ideas and procedures for image filtering in crys- 
tallographic structure determination have developed 
relatively independently from related fields. There 
exists however a large amount of work on optimal 
filtering, generalized filter transforms, pattern re- 
cognition and feature extraction. 

For example, in electron microscopy a procedure 
quite similar to the iterative procedure of direct meth- 
ods has been proposed (Gerchberg & Saxton, 1972). 
The only difference, compared with the process of 
Fig. 4, consists of the assumed knowledge of the am- 
plitude of the complex density in real space (Fig. 5). 
Starting with arbitrary phases the convergence to the 
correct phases under these assumptions has been in- 
vestigated (Schiske, 1974, 1975; Huiser, Drenth & 
Ferwerda, 1976). Generalized transforms have also 
been considered in electron microscopy (Hawkes, 
1974) and in signal processing (see, for example, Pratt, 
1972), whereas the eigenvector transformation has been 
used for optical pattern recognition and feature ex- 
traction (see, for example, Foley & Sammon, 1975; 
Therrien, 1975). 

A careful analysis of these and similar ideas might 
show further relevance for structure determination. 

The author appreciates very much the continuous 

interest and support of Professor W. Hoppe for this 
work. 
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